Share this post on:

product name Butein


Description: Butein, a plant polyphenol isolated from Rhus verniciflua, is able to inhibit the activation of protein tyrosine kinase, NF-κB and STAT3, it also inhibits EGFR. Butein can induce the apoptosis in B16 melanoma cells and human promyelocytic leukemia cells, inhibit diabetes complications, and inhibit enzymes such as protein kinases and glutathione reductase.

References: Biochem Biophys Res Commun. 1998;245(2):435-8; Clin Cancer Res. 2011;17(6):1425-39; Planta Med. 2003;69(11):990-4.



Molecular Weight (MW)

272.25
Formula

C15H12O5
CAS No.

487-52-5
Storage

-20℃ for 3 years in powder form
-80℃ for 2 years in solvent
Solubility (In vitro)

DMSO: 55 mg/mL (202.0 mM)
Water: <1 mg/mL
Ethanol: 55 mg/mL (202.0 mM)
Solubility (In vivo)

 
Synonyms

 

other peoduct :References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19416778

In Vitro

In vitro activity: Butein inhibits the epidermal growth factor (EGF)-stimulated auto-phosphotyrosine level of EGF receptor in HepG2 cells, and also inhibits tyrosine-specific protein kinase activities of EGF receptor and p60c-src with IC50 of 65 μM in vitro. The inhibition is competitive to ATP and non-competitive to the phosphate acceptor, poly (Glu, Ala, Tyr) 6:3:1 for EGF receptor tyrosine kinase. In contrast, Butein non-significantly inhibits the activities of serine- and threonine-specific protein kinases such as PKC or PKA. Butein inhibits Nuclear Factor(NF)-κB and NF-κB-regulated gene expression through direct inhibition of IκBα Kinase β on Cysteine 179 Residue. Butein (10 μM) inhibits over 90% iNOS and COX-2 expression, as well as nitrite and TNF-α production in LPS-stimulated RAW 264.7 cells. Butein (10 μM) inhibits LPS-induced DNA binding activity of NF-κB, which is mediated through inhibition of the degradation of inhibitory factor-κB and phosphorylation of Erk1/2 MAP kinase, as well as increases binding of the osteopontin a vb3 integrin receptor. Butein (20 μM) treatment induces morphologic changes of bladder cancer cells BLS(M) from elongated morphology to rounded epithelial-like cells, accompanied by downregulation of vimentin, and gaining of E-cadherin compared to untreated control cells, indicating the reversal of mesenchymal-like phenotype. Butein (20 μM) suppresses motility and invasion capacity of BLS(M) cells, and reverts EMT-like phenotype induced by TNF-α, through the ERK1/2 and NF-κB signaling pathways. Butein inhibits the constitutive activation of STAT3 in HepG2 cells in a dose-dependent manner, with maximum inhibition occurring at 50 μM, mediated through the inhibition of activation of upstream kinases c-Src and Janus-activated kinase2. Butein (50 μM) also could completely inhibit IL-6-induced STAT3 phosphorylation in SNU-387 cells. Butein downregulates the expression of cyclin D1, Bcl-2, Bcl-xL, survivin, and VEGF, markers of STAT3 activation. Butein (50 μM) significantly enhance the apoptotic effects of doxorubicin from 18% to 55% and of paclitaxel from 15% to 42%. Butein is as a powerful antioxidant against lipid and LDL peroxidation. Butein inhibits iron-induced lipid peroxidation in rat brain homogenate with an IC50 of 3.3 μM. Butein is as potent α-tocopherol in reducing the stable free radical diphenyl-2-picrylhydrazyl (DPPH) with IC0.2 of 9.2 μM. Butein also inhibits the activity of xanthine oxidase with an IC50 of 5.9 μM. Butein scavenges the peroxyl radical derived from 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH) in aqueous phase. Furthermore, Butein inhibits copper-catalyzed oxidation of human low-density lipoprotein (LDL) in a concentration-dependent manner. Butein is a chelator of ferrous and copper ions.


Kinase Assay:


Cell Assay: The cells (5× 103/mL, Human hepatoma cells HepG2) are incubated in triplicate in a 96-well plate in the presence or absence of indicated concentration of Butein in a final volume of 0.2 mL for different time intervals at 37 ℃. Thereafter, 20 μL MTT solution (5 mg/mL in PBS) is added to each well. After a 2-hour incubation at 37 ℃, 0.1 mL lysis buffer (20% SDS, 50% dimethylformamide) is added, incubation is continued overnight at 37 ℃, and then the optical density at 570 nm is measured by plate reader.

In Vivo Butein at 2 mg/kg induces significant inhibition of hepatocellular tumor growth compared with the corn oil-treated controls. At necropsy on day 22 after initial treatment, there is more than 2-fold decrease in tumor growth in the Butein-treated group (mean relativetumor burden, 3.90) compared with the control group (8.46), associated with reduced constitutive p-STAT3 (9% vs 81% of vehicle group), Bcl-2 levels (26% vs 96% of vehicle group), and increased caspase-3 level (98% vs 21% of vehicle group) in HCC tumor tissues. Butein shows antifibrogenic activity. Butein (25 mg/kg/day) reduces serum AST and ALT activation to 35% and 69%, respectively, of control CCl4-induced rat levels. Butein (25 mg/kg/day) reduces liver hydroxyproline contents and TBAR4 concentration to 54% and 54%, respectively. α1(I) collagen and TIMP-1 expression in Butein-treated rats is 28% and 20.3% compared with the values for the respective CCl4-treated control.
Animal model Human hepatocellular carcinoma xenografts HepG2
Formulation & Dosage Dissolved in 200 μL corn oil;  2 mg/kg; i.p. injection.
References Biochem Biophys Res Commun. 1998 Apr 17;245(2):435-8; Clin Cancer Res. 2011 Mar 15;17(6):1425-39; Planta Med. 2003 Nov;69(11):990-4.

SHP100

Share this post on:

Author: Sodium channel